Lecture 6: Exploring Regular Surfaces

Prof. Weiqing Gu

Math 142:
Differential Geometry

Two Shortcuts

The last example in the previous lecture shows that deciding whether a given subset of \mathbb{R}^{3} is a regular surface directly from the definition may be quite tiresome.

Shortcut 1
If $f: U \rightarrow \mathbb{R}$ is a differentiable function in an open set U of \mathbb{R}^{2}, then the graph of f, that is, the subset of \mathbb{R}^{3} given by $(x, y, f(x, y))$ for $(x, y) \in U$, is a regular surface

Proof.

Critical Points and Values

Definition

Given a differentiable map $F: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ defined in an open set U of \mathbb{R}^{n} we say that $p \in U$ is a critical point of F if the differential $d F_{p}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is not a surjective (or onto) mapping. The image $F(p) \in \mathbb{R}^{m}$ of a critical point is called a critical value of F. A point of \mathbb{R}^{m} which is not a critical value is called a regular value of F.

The terminology is evidently motivated by the particular case in which $f: U \subset \mathbb{R} \rightarrow \mathbb{R}$ is a real-valued function of a real variable. A point $x_{0} \in U$ is critical if $f^{\prime}\left(x_{0}\right)=0$, that is, if the differential $d f_{x_{0}}$ carries all the vectors in \mathbb{R} to the zero vector. Notice that any point $a \notin f(U)$ is trivially a regular value of f.

Critical Points and Values

Remark

If $f: U \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$ is a differentiable function, then

$$
d f_{p}=\left(f_{x}, f_{y}, f_{z}\right)
$$

Note, in this case, that to say that $d f_{p}$ is not surjective is equivalent to saying that $f_{x}=f_{y}=f_{z}=0$ at p. Hence, $a \in f(U)$ is a regular value of $f: U \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$ if and only if f_{x}, f_{y}, and f_{z} do not vanish simultaneously at any point in the inverse image

$$
f^{-1}(a)=\{(x, y, z) \in U \mid f(x, y, z)=a\} .
$$

Two Shortcuts

Shortcut 2
If $f: U \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a differentiable function and $a \in f(U)$ is a regular value of f, then $f^{-1}(a)$ is a regular surface in \mathbb{R}^{3}.

Proof
Let $p=\left(x_{0}, y_{0}, z_{0}\right)$ be a point of $f^{-1}(a)$. Since a is a regular value of f, it is possible to assume, by renaming the axis if necessary, that $f_{z} \neq 0$ at p.

Examples

Example

The ellipsoid

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

is a regular surface.

The examples of regular surfaces presented so far have been connected subsets of \mathbb{R}^{3}. A surface $S \subset \mathbb{R}^{3}$ if said to be connected if any two of its points can be joined by a continuous curve in S. In the definition of a regular surface we made no restrictions on the connectedness of the surfaces, and the following example shows that the regular surfaces given by Shortcut 2 may not be connected.

Examples

Example

The hyperboloid of two sheets $-x^{2}-y^{2}+z^{2}=1$ is a regular surface. Note that the surface S is not connected.

Examples

Example

The torus T is a "surface" generated by rotating a circle S^{1} of radius r about a straight line belonging to the plane of the circle and at a distance $a>r$ away from the center of the circle.

Proof

Let S^{1} be the circle in the $y z$ plane with its center on the point $(0, a, 0)$. Then S^{1} is given by $(y-a)^{2}+z^{2}=r^{2}$.

The points of T are obtained by rotating this circle about the z axis satisfying the equation

$$
\left(\sqrt{x^{2}+y^{2}}-a\right)^{2}+z^{2}=r^{2}
$$

Examples

Proof (cont'd)

Let $f(x, y, z)=\left(\sqrt{x^{2}+y^{2}}-a\right)^{2}+z^{2}$. Then

$$
\frac{\partial f}{\partial z}=2 z, \quad \frac{\partial f}{\partial y}=\frac{2 y\left(\sqrt{x^{2}+y^{2}}-a\right)}{\sqrt{x^{2}+y^{2}}}, \quad \frac{\partial f}{\partial x}=\frac{2 x\left(\sqrt{x^{2}+y^{2}}-a\right)}{\sqrt{x^{2}+y^{2}}} .
$$

Hence, $\left(f_{x}, f_{y}, f_{z}\right) \neq(0,0,0)$ in $f^{-1}\left(r^{2}\right)$, so r^{2} is a regular value.
Therefore, the torus is a regular surface.

Examples

Example

A parametrization for the torus T of the previous example can be given by

$$
\mathbf{x}(u, v)=((r \cos u+a) \cos v,(r \cos u+a) \sin v, r \sin u),
$$

where $0<u<2 \pi, 0<v<2 \pi$.

A Very Useful Fact

Fact If $f: S \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$ is a nonzero continuous function defined on a connected surface S, the f does not change sign on S.

Proof.

Two Propositions

Proposition

Let $S \subset \mathbb{R}^{3}$ be a regular surface and $p \in S$. Then there exists a neighborhood V of p in S such that V is the graph of a differentiable function which has one of the following three forms $z=f(x, y)$, $y=g(x, z), x=h(y, z)$. (This proposition is usually used to prove that a subset of \mathbb{R}^{3} is not a regular surface.)

Two Propositions

Proposition

Let $p \in S$ be a point of a regular surface S and let $\mathbf{x}: U \subset \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a map with $p \in \mathbf{x}(U) \subset S$ such that conditions 1 and 3 of the definition hold. Assume that \mathbf{x} is one-to-one. Then \mathbf{x}^{-1} is continuous.

